
ZXELAR:
Connecting Applications with Blockchain Ecosystems

Abstract

Multiple blockchain ecosystems are emerging that provide unique and distinct features attractive 

to users and application developers. However, communication across the ecosystems is very sparse 

and fragmented. To enable applications to communicate across blockchain ecosystems frictionlessly, we 

propose ZXELAR. ZXELARstack provides a decentralized network, protocols, tools, and APIs that allow 

simple cross-chain communication. ZXELARprotocol suite consists of cross-border routing and transfer protocols.

A decentralized open network of validators powers the network; anyone can join, use it, and participate.
Byzantine consensus, cryptography, and incentive mechanisms are designed to achieve high 

safety and liveness requirements unique for cross-chain requests.

1 Introduction

Blockchain systems are quickly gaining popularity and attract new use cases for asset tokenization, decen-
tralized finance, and other distributed applications. Several major platforms such as Ethereum, Monero,
EOS, Cardano, Terra, Cosmos, Avalanche, Algorand, Near, Celo, and Polkadot offer distinct features and
development environments that make them attractive for different applications, use-cases, and end-users
[5, 12, 4, 22, 21, 24, 25, 20, 6, 15, 26]. However, the useful features of each new platform are currently
offered to less than 1% of the ecosystem’s users, namely the holders of the native token on that platform.
Can we allow platform developers to plug in their blockchains to other ecosystems easily? Can we enable
application builders to build on the best platform for their needs while still communicating across multiple
blockchain ecosystems? Can we allow users to interact with any application on any blockchain directly from
their wallets?

To bridge the blockchain ecosystems and enable applications to communicate frictionlessly across them,
we propose ZXELARnetwork.
Validators collectively run a byzantine consensus protocol and run the protocols facilitating cross-
chain requests. Anyone can join the network, participate, and use it. The underlying 

network is optimized for high safety and liveness requirements unique for cross-chain requests.
ZXELAR network also includes a protocol suite and APIs. The core protocols are:

• Cross-Chain Transfer Protocol (CTP). This protocol is analogous to application-level protocols File
Transfer, Hypertext Transfer Protocols on the Internet. It is an application-level protocol stack that
sits on top of routing protocols (such as CGP and other routing technologies). Application developers
can connect their dapps on any chain to perform cross-chain requests. Users can use the CTP protocol
to interact with applications on any chain using simple API calls analogous to HTTP GET/POST
requests. Developers can lock, unlock, and transfer assets between any two addresses across any

• Cross-Chain Gateway Protocol (CGP). This protocol is analogous to Border Gateway Protocol on
the Internet. This protocol is used to connect multiple autonomous blockchain ecosystems and is
responsible for routing across them. Blockchains do not need to “speak any custom language”, their
platform developers do not need to make any custom changes on their chains, and their chains can be
plugged into the global network easily.

blockchain platforms, execute cross-chain application triggers (e.g., an dapps on chain A, can update

1



its state if some other application on chain B satisfies some search criteria (interest rate > X)), and
perform general cross-chain requests between apps across chains (a smart contract on chain A can call
to update a state of a smart contract on chain B). This protocol enables the composability of programs
across blockchain ecosystems.

ZXELARnetwork offers the following advantages:

• For blockchain platform builders: Ability to easily plug-in their blockchains to all other blockchain
ecosystems. Only a threshold account needs to be set up on the chain to plug into the network.

• For dapps builders: Application builders can host their dapps anywhere, lock, unlock, transfer assets,
and communicate with applications on any other chain via CTP API.

• For users: Users can interact with all applications across the ecosystem directly from their wallets.

A Platform for Builders. Finally, ZXELARnetwork is a platform for developers and a global community.
Its governance model is open to anyone. Developers can propose new integration points, routing, and
application-level protocols, and the users can decide whether to adopt them by voting on the proposals and,
if approved, validators will adopt the changes.

1.1 Existing Interoperability Solutions

Previous attempts to solve interoperability across blockchains fall in one of four categories: centralized
exchanges, interoperable ecosystems, wrapped assets, and token bridges. We briefly summarize these ap-
proaches below.

Centralized Systems. Today centralized systems are the only truly scalable solutions to interoperability
needs for the ecosystem. They can list any asset or onboard any platform relatively easily. However,
centralized systems are known to have various security issues and are not good enough to power the emerging
decentralized financial system that requires robust security, transparency, and open governance. On their
own they cannot power the decentralized applications as they grow.

Interoperability Hubs. Projects such as Cosmos, Polkadot, Ava labs address interoperability between
sidechains native to their ecosystems using custom inter-chain communication protocols [24, 26, 25]. For
example, one can spin-up a sidechain (a Cosmos Zone) that can communicate with the Cosmos Hub. The
sidechain must be based on the Tendermint consensus and speak the protocol natively understood by the
Cosmos Hub. Connections to other blockchains and ecosystems that speak different languages is left to
external technologies.

Pairwise Bridges. Wrapped assets (e.g., wrapped Bitcoins) try to fill-in the missing cross-chain inter-
operability gap in the ecosystem. One example is tBTC [10], which is a custom protocol where a clever
combination of smart contracts and collateral is used to secure the transfers. These solutions require sub-
stantial engineering efforts to build – for each chain pair, developers must build a new smart contract on
destination chain that parses state proofs from origin chain (similar to how each side-chain could, in princi-
ple, parse state of other chains). Only a handful of bridges have been deployed using this approach. These
approaches do not scale when one of the underlying blockchains wants to upgrade its consensus rules or
transaction format. This is because all smart contracts that depend upon the state of these chains would
need to be upgraded. One must also set up validators and require them to lock up different assets in order
to overcollateralize any asset transfer, which limits the economic efficiency of such transfers.

We have also seen a few other single-purpose bridges by platform developers that rewrite state-transition
logic in smart contracts to bridge to other ecosystems [1, 7]. They suffer from multiple scalability issues,
do not allow the ecosystem to scale uniformly, and introduce additional dependencies for applications. For
instance, if one platform changes, then all smart contracts on all bridges will need to be upgraded. This

2



will ultimately put the ecosystem in a gridlock where no-one will be able to upgrade. Finally, if one single-
purpose bridge connects platforms A and B, and a second single-purpose bridge connects B and C, it does
not mean that applications on A will be able to talk to applications on C. One might need to create another
single-purpose bridge or rewire application logic.

Other attempts to tackle interoperability include federated oracles (e.g., Ren [8]), and application specific
interoperable blockchains [11, 9].

To summarize, existing solutions for interoperability require heavy engineering work from both platform
developers and application builders that must understand different communication protocols to communicate
across every pair of ecosystems. And so, interoperability is virtually non-existing in today’s blockchain space.
At the end of the day, platform developers want to focus on building platforms and optimize them for their
use-cases and be able to plug in to other blockchains easily. And application developers want to build dapps
on the best platforms for their needs while still leveraging users, liquidity and communicate with other dapps
on other chains.

2 The Quest for Scalable Cross-Chain Communication

At the core, cross-chain communication requires that heterogeneous networks find the ability to communicate 

using the same language. To solve this, we explain the ZXELARprotocol suite, describe its high-
level properties,and explain how these properties address the core of scalable cross-chain communication.

1. “Plug-and-play” integration. Blockchain platform builders should not be required to perform heavy
engineering or integration work to speak some “custom language” to support cross-chain. The cross-
chain protocol should be able to plug in any existing or new blockchain frictionlessly. New assets should
be added with minimal effort.

2. Cross-chain routing. Functions such as the discovery of network addresses, routing paths, and networks
are at the core of the Internet and facilitated by BGP and other routing protocols. Similarly, to
facilitate communication across blockchain ecosystems, we need to support the discovery of addresses
across them, applications, and routing.

3. Upgradability support. If one of the blockchain ecosystems changes, it should not affect the interop-
erability of other blockchains. The system needs to recognize updates, and minimal effort should be
required to support them (i.e., no “state transition logic” should be rewritten, and applications should
not break).

4. Uniform language for applications. Applications need a simple protocol to lock, unlock, transfer, and
communicate with other applications no matter which chain they reside on. This protocol must be
chain-agnostic and support simple calls, analogous to HTTP/HTTPS protocols that allow users and
browsers to communicate with any web-server. As more networks and assets join the lower-level routing
protocols, applications should be able to use them for communications without rewriting their software
stacks.

Next, we summarize the security requirements that these protocols must meet.

1. Decentralized trust. The network and protocols must be decentralized, open, and allow everyone to
participate fairly.

2. High safety. The system must satisfy high safety guarantees. The system needs to preserve the safety
of assets and the state as the cross-chain network processes it.

3. High liveness. The system must satisfy high liveness guarantees to support applications leveraging its
cross-chain features.

3



Satisfying a subset of these properties is easy. For instance, one can create a federated multisig account
with their friends and lock/unlock assets on corresponding chains. Such systems are inherently vulnerable
to collusion and censorship attacks and lack proper incentives for the validators to protect them. Creating
a decentralized network and protocol suite where anyone can participate while being correctly incentivized
can enable frictionless cross-chain communication, but solving it is a hard problem that requires a careful
combination of consensus, cryptographic, and mechanism design protocols.

3 ZXELARNetwork

ZXELARnetwork provides a uniform solution to cross-chain communication that meets the needs of both plat
-form developers – no integration work is required from them, and application builders –
one simple protocol and API to access global liquidity and communicate with the entire ecosystem.

ZXELARnetwork consists of a decentralized network which bridges blockchain ecosystems that speak diff
er-ent languages and a protocol suite with APIs on top, making it easy for applications to perform cross-
chain requests. The network connects existing stand-alone blockchains such as Bitcoin, Stellar, Terra,
Algorand,and interoperability hubs such as solutions like Cosmos, Avalanche, Ethereum, and Polkadot.
Our mission 

is to enable application developers to build such apps easier using a universal protocol and API without 

rolling out their proprietary cross-chain protocols underneath or rewriting applications as new bridges are 

developed. Towards this, we designed a protocol suite that includes Cross-Chain Gateway Protocol (see 

Section 6) and Cross-Chain Transfer Protocol (see Section 7).
A core component of the network are the underlying decentralized protocols. Validators collectively 

maintain the ZXELARnetwork and run the nodes that secure the ZXELARblockchain.
They are elected through a delegation process by the users. Validators receive voting power pro-
rata according to the stake delegated to them.
The validators reach consensus on the state of multiple blockchains that the platform is connected to.
The blockchain is responsible for maintaining and running the cross-chain routing and transfer protocols.
Governance rules allow network participants to enact protocol decisions such as which blockchains to bridge 

and which assets to support.
ZXELARblockchain follows a Delegated Proof-of-Stake (DPoS) model similar to Cosmos Hub.

Users elect validators who must bond their stake to participate in the consensus and maintain high-
quality service. The 

DPoS model allows maintenance of large decentralized validator set and robust incentives to guarantee that 

the validators are responsible for maintaining bridges and shares of cryptographic threshold schemes. As 

part of consensus, validators run light-client software of other blockchains, allowing them to verify the state 

of other blockchains. The validators report these states to the ZXELARblockchain,
and once enough of them report, the state of Bitcoin, Ethereum, and other chains is recorded on ZXELAR.

Subsequently,
the ZXELARbase layer is aware of the state of external blockchains at any point in time,creating the “
incoming bridges” from other blockchains. The validators collectively maintain threshold sig-
nature accounts on other blockchains (e.g., 80% of validators must approve and co-sign any transaction 

out of it), which allows them to lock and unlock assets and state across chains and to post state on other 

blockchains, the “outgoing bridges.” Altogether,
one can view the ZXELARnetwork as a decentralized cross-chain read/write oracle.

The remainder of the document describes preliminaries and building blocks behind the network (Sec-
tion 4), some technical details of the network (Section 5), cross-chain gateway protocol (Section 6), and
cross-chain transfer protocol (Section 7).

4



4 Preliminaries

4.1 Notation and Assumptions

Let V r denote the set of ZXELARvalidators at round R. Each validator has a weight, a number in (0,
1]denoting the voting power of that particular validator. The weights of all validators add up to 1.
A validator is correct if she runs a node that is consistent with the rules of the ZXELARprotocol. To fi
nalize blocks, or to sign cross-chain requests, ZXELARrequires correct validators of total weight > F .
We call the parameter F ∈ [0.5, 1] the protocol threshold.

ZXELARcan be based on an instant finality Delegated-Proof-of-Stake blockchain.
The validators run Byzan-tine Fault Tolerant (BFT) consensus at each round i to finalize the ith block.
Once the ith block is finalized,new BFT consensus is run to finalize the i + 1th block, and so on.
The validators are elected through stake delegation.
A user with some stake may elect to run a validator node, or delegate their voting power (stake)
to an existing validator, who then votes on their behalf. The validator set can be updated, validators join/
leave the set, and users delegate/undelegate their voting power.

Different blockchains work under different network assumptions. Synchronous communication means
that there is a fixed upper bound ∆ on the time messages take to be delivered, where ∆ is known and can
be built into the protocol. Asynchronous communication means that messages may take arbitrarily long to
be delivered, and it is known that BFT protocols cannot be built for asynchronous networks even in the
presence of just one malicious validator. A realistic compromise between synchrony and asynchrony is the
assumption of partially synchronous communication. The network may be completely asynchronous until
some unknown global stabilization time (GST), but after GST communication becomes synchronous with a
known upper bound ∆ [18].

Typical blockchains work under the assumption of > F correct validators. For synchronous networks 

F = 1/2 is typically set, but for the weaker assumption of a partially synchronous network F = 2/3.
Bitcoin, its forks, and the current Proof-of-Work version of Ethereum only work assuming synchrony. Others 

like Algorand and Cosmos only require partial synchrony. When connecting chains through ZXELAR,
the connection works assuming the strongest network assumptions out of these chains,
which is synchrony in the case of connecting Bitcoin and Cosmos, for instance.
The ZXELARblockchain itself works in a partially synchronous setting and thus requires F = 2/3,
but it is possible to improve the threshold requirement by 

assuming that other existing blockchains are secure and leveraging their security.

4.2 Cryptographic Preliminaries

Digital Signatures. A digital signature scheme is a tuple of algorithms (Keygen, Sign, V erify). Keygen
outputs a pair of keys (PK,SK). Only the owner of SK can sign messages, but anyone can verify the
signatures given the public key PK. Most blockchain systems today use one of the standard signature
schemes such as ECDSA, Ed25519, or a few of their variants [2, 3].

Threshold Signatures. A threshold signature scheme enables a group of n parties to split a secret key
for a signature scheme in such a way that any subset of t + 1 or more parties can collaborate to produce a
signature, but no subset of t or fewer parties can produce a signature or even learn any information about
the secret key. The signatures produced by the threshold protocols for ECDSA and EdDSA look identical
to the signatures produced by the stand-alone algorithms.

A threshold signature scheme replaces the Keygen and Sign algorithms for an ordinary signature scheme
with distributed n-party protocols T .Keygen, T .Sign. These protocols typically require both a public
broadcast channel and private pairwise channels among the parties, and they typically involve several rounds
of communication. After successful completion of T .Keygen each user holds a share si of a secret key SK
and the corresponding public key PK. The T .Sign protocol allows these parties to produce a signature for a

5



given message that is valid under public key PK. This signature can be verified by anyone using the Verify
algorithm of the original signature scheme.

4.3 Properties of Threshold Signatures

There are several properties a threshold scheme might have that are especially desirable for decentralized
networks:

Security against a dishonest majority. Some threshold schemes have the restriction that they are secure
only when a majority of the n parties are honest. Thus, the threshold parameter t must be smaller
than n/2 [16]. This restriction is typically accompanied by the fact that 2t + 1 honest parties are
needed to sign, even though only t+ 1 corrupted parties can collude to recover the secret key. Schemes
that do not suffer from this restriction are said to be secure against a dishonest majority.

As discussed later in Section 5.2, cross-chain platforms must maximize the safety of their networks and
be able to tolerate as many corrupted parties as possible. Thus, schemes that can tolerate dishonest
majority are necessary.

Pre-signatures, non-interactive online signing. In an effort to reduce the burden of communication
upon the parties to sign a message, several recent protocols have identified a significant portion of the
work for a signature that can be done “offline”, before the message to sign is known [19, 14]. The
output of this offline phase is called a pre-signature. The production of pre-signatures is viewed as a
separate protocol T .Presign distinct from T .Keygen and T .Sign. The outputs of the pre-signature
protocol must be kept private by the parties until they use them at the signing phase. Later, when the
message to sign becomes known, only a small amount of additional “online” work remains to be done
in T .Sign in order to complete the signature.

The online T .Sign phase does not require any communication among the parties. Each party simply
does a local computation on the message and pre-signature and then announces her share si of the
signature. (Once public, these signature shares s1, . . . , st+1 are easily combined by anyone to reveal
the actual signature s.) This property is called non-interactive online signing.

Robustness. Threshold schemes guarantee only that a subset of malicious parties cannot sign messages or
learn the secret key. This guarantee does not, however, preclude the possibility that bad actors can
block everyone else from producing keys or signatures. In some schemes, malicious behaviour by even
a single party can cause T .Keygen or T .Sign to abort with no useful output. The only recourse is to
restart the protocol, possibly with different parties.

Instead, for decentralized networks, we want T .Keygen and T .Sign to succeed if at least t + 1 of the
parties are honest, even if some malicious parties send malformed messages or drop messages in the
protocols. This property is called robustness.

Fault attribution. The ability to identify bad actors in T .Keygen or T .Sign is called fault attribution.
Without fault attribution it is difficult to reliably exclude or punish bad actors, in which case the costs
imposed by bad actors must be borne by everyone. This property is also important for decentralized
networks where malicious behavior should be identifiable and economically disincentivized via slashing
rules.

Security in concurrent settings. The signature scheme needs to be secure in a concurrent setting, where
multiple instances of the keygen and signing algorithms can be involved in parallel. (Drijvers et al. [17]
for instance, showed an attack against Schnorr multisignature schemes in these settings). There are
versions of both ECDSA and Schnorr schemes that satisfy these properties [14, 23].

ECDSA and EdDSA are by far the most widely deployed signature schemes in the blockchain space.
As such, threshold versions of both schemes have been the focus of a recent resurgence in research and
development. Readers interested in state-of-the-art can refer to [23, 14, 19] and a recent survey paper [13].

6



5 ZXELARNetwork

5.1 Designing an Open Cross-Chain Network

The bridges that ZXELARnetwork maintains are backed up by threshold accounts such that (almost)
all valida-tors must collectively authorize any cross-chain request.
Designing a network where anyone can participate 

to secure these bridges requires meeting the following technical requirements:

• Open membership. Any user should be able to become a validator (following the rules of the network).

• Updates to membership. When a validator leaves the system honestly, their key needs to be revoked
appropriately.

• Incentives and slashing. Malicious validators should be identifiable and their actions must be identified
and addressed by the protocol.

• Consensus. Threshold schemes on their own are defined as stand-alone protocols. To propagate mes-
sages between nodes we need both broadcast and point-to-point private channels. Moreover, validators
need to agree on the latest state of each invocation of threshold schemes since they often have multiple
round of interactions.

• Key-management. Just as ordinary validators in any PoS system must carefully guard their keys, so
too must ZXELARvalidators guard their threshold shares. Keys need to be rotated,
split between online
and offline parts, etc.

ZXELARstarts with Delegated Proof-of-Stake model,
where the community elects a set of validators to run the consensus.
Note that standard threshold schemes treat every player identically and have no notion of “weight”
in the consensus. Hence, the network must adapt them to take validators’ weight into account. A 

simple approach is to assign multiple threshold shares to larger validators. Outlined below are three basic 

functions that validators collectively perform.

validators.

3. It propagates the messages either via the broadcast or via the private channels to other validators.

4.

• Threshold Key Generation. Existing threshold key generation algorithms for standard blockchain
signature schemes (ECDSA, Ed25519) are interactive protocols between multiple participants (see
Section 4).
A special transaction on the ZXELARnetwork instructs the validators to commence execution
of this stateful protocol. Each validator runs a threshold daemon process that is responsible for the
secure keeping of the secret state. For each phase of the protocol:

1. A validator keeps the state of the protocol in its local memory.

2. It calls the secret daemon to generate the messages as per the protocol description for other

Each validator executes state transition functions to update its state, proceed to the next phase

• Handling Validator Membership Changes. The validator set needs to be rotated periodically to allow
for new stakeholders to join the set. Upon a validator set update, we need to update the threshold
key to be shared across the new set. Thus if we allowed anyone to join at any time, we would have to
update the threshold key very frequently. To prevent this, we rotate validators every T blocks. Within
intervals of T rounds, the set V R and the threshold key are fixed. At every round that is an integral
multiple of the parameter T

• Threshold Signing. Signing requests on the ZXELARnetwork are processed similarly to the key-
generation

requests. These are invoked, for instance, when a user wants to withdraw an asset from one of the
chains. These are interactive protocols, and state transition between the rounds is triggered as a

function of the messages propagated via the ZXELARblockchain view and every validator’s local memory

At the end of the protocol, a threshold public key is generated on the ZXELARchain,
and it can be displayed back to the user (e.g., for deposits)

of the protocol, and repeat the above steps.

or to the application that generated the initial request.

.

, we update the validator set as follows:

7



1. At any round R, the ZXELARstate keeps track of the current validator set V R. V R+1 = V R unless

2. During rounds ((i− 1)T, iT ], users post bonding/unbonding messages.

3. At the end of round iT , these messages are applied to V iT−1 to get V iT

R + 1 is a multiple of T .

.

• Threshold Key Generation and Signing in the Presence of Rotating Validators.
ZXELARblockchain may

issue a request for a new key or a threshold signature at round R. The signing process takes longer than
one round, and we don’t want to slow down consensus, so we request that the signature is produced
before round R + 10 starts. In particular, validators start round R + 10 only after seeing a certificate
for round R+ 9 and a signature for each keygen/signature request issued at round R. The outcome of
all round R requests must be included in block R+ 11. In other words, a round R block proposal that
does not contain the outcomes from a round R − 11 is considered invalid, and validators don’t vote
on it. To ensure that all threshold messages are signed before a validator set update,
ZXELARdoes not
issue any threshold requests during a round equal to −1,−2, . . . ,−9 modulo T .

5.2 Network Security

The security of blockchain systems relies on various cryptographic and game theoretic protocols, as well as
the decentralization of the network. For instance, in proof-of-stake blockchains, without the proper incentives
validators may collude and rewrite the history, stealing other users’ funds in the process. In proof-of-work
networks, without sufficient decentralization, it is quite easy to create long forks and double spend, as the
multiple attacks on Bitcoin Gold and Ethereum Classic have proven.

Most of the research on blockchain security has focused on sovereign chains. But once chains interoperate,
new attack vectors have to be considered. For instance, assume that Ethereum talks to a small blockchain
X through a direct bridge controlled by two smart contracts, one on Ethereum and one on X. Besides the
engineering challenges we summarized in Section 1.1, one must decide what happens when the trust assump-
tions of X are violated. In this case, if ETH has moved to X, the validators of X may collude to forge a
history of X where they hold all the ETH, post the forged consensus proofs on Ethereum and steal the ETH.
The situation is even worse when X is connected with multiple other chains through direct bridges, where
if X forks the effects propagate through every bridge. Setting up recovery governance guidelines for each
pairwise bridge is an overwhelming task for any individual project.

ZXELARnetwork addresses the security concerns using the following mechanisms:

• Maximum Safety. ZXELARsets the safety threshold to 90%,
meaning that almost all validators will need

to collude to withdraw any funds that are locked by its network or forge state proofs1. In practice,
it has been observed that PoS validators have very high up-time (close to 100%), assuming they are
properly incentivized. Hence,
ZXELARnetwork will produce blocks even despite this high threshold.
However, in the rare case that something goes wrong and the network stalls, the network needs robust
fall-back mechanisms to reboot the system described next.

• Maximum Decentralization. Since the network uses threshold signature schemes, the number of val-
idators can be as large as possible. The network is not bounded by the number of validators we
can support, transaction limits or fees that would arise from using, for instance, multi-signatures on
different chains where the complexity (and fees) increase linearly with the number of validators.2

• Robust Fall-back Mechanisms. The first question that must be addressed in a network with high safety
thresholds as above is what happens when the network itself stalls. Suppose ZXELARnetwork itself

stalls. Can we have a fall-back mechanism that would allow users to recover their funds? To address
any potential stall of the ZXELARnetwork itself, each threshold bridge account on a blockchain X that
the ZXELARvalidators collectively control has an “emergency unlock key”. This key can be shared

1The final parameter that will be chosen for the network deployment may be adjusted.
2For some blockchains, multi-signatures offer a reasonable alternative where gas fess are small and supported message formats 

are appropriate. But they do not scale for two of the most largest platforms like Bitcoin and Ethereum.

8



• Shared Governance. A common protocol governs the ZXELARnetwork. Collectively,
the users can vote

on which chain should be supported through its network. The network will also allocate a pool of funds
that can be used to reimburse users in case of unexpected emergencies, controlled via the governance

across thousands of parties and may even be a custom key for blockchain X that is shared across the 

community of that chain. Hence, if ZXELARnetwork stalls, this key will act as a fall-
back and enable recovery of the assets (see below for more details).

• Maximum Decentralization of Fall-Back Mechanisms. This fall-back mechanism includes a secondary
recovery set of users, in which just anyone can participate without any cost. These users do not need to
be online, run nodes, or coordinate with each other. They are only “called on duty”
if ZXELARnetwork
stalls and cannot recover. The network’s security is enhanced by a very high threshold on the primary
validator set and a maximally decentralized secondary recovery set.

protocols as well.
Various security mechanisms are discussed below.

Fall-Back Mechanisms. When ZXELARstalls due to the high threshold, an “emergency unlock key” takes
control of the network. There are multiple ways to instantiate this unlock key, and certain chains/applications
may opt to utilize a different variation for the “recovery set” or opt-out completely:3

• Option a. Share the key across foundations of blockchain projects and reputable people in the com-
munity.

• Option b. Share the across parties elected through the delegated PoS mechanism.

• Option c. For accounts managing assets and information for chain/application X, share a custom key
across the stakeholders/validators of X. Assuming X has governance mechanisms in place, the same
governance mechanisms can be applied to determine a course of action if ZXELARstalls.

Now, given the recovery users’ identities and their public keys, a simple protocol generates shares of the 

recovery key that no-one knows. Moreover, the users of recovery set do not need to be online until called 

to recover via the governance mechanisms. Following the standard distributed key-generation protocols,
each ZXELARvalidator shares a random value.
The recovery secret key is generated by summing up these values.
Instead of doing the summations in the clear, all shares are encrypted under the public keys of the 

recovery users and then added up homomorphically (this assumes additively homomorphic encryption and 

an additional layer of zero-knowledge, both of which are easily obtainable). The result of this protocol is a 

recovery public key RPK and potentially thousands of encryptions (under the public keys of the recovery 

users) of the shares of the corresponding secret key Enci(si) that are distributed to their owners (e.g., posted 

on chain).
ZXELARbridge contracts include an option to recover funds using RPK under certain conditions.Finally,
it is also possible to update this recovery key and even change the set of users holding its shares 

without requiring any work from the participating shareholders.

If chain X that is connected to ZXELARbreaks, there are a couple options:

• Impose limits on the USD value of assets that can be moved in/out of X on any single day. Thus
a malicious chain X can only steal a small fraction of all assets that are bridged to it before ZXEL
AR
validators detect this, and the governance mechanisms from the following bullets kick in.

• The ZXELARgovernance module can be used to vote on what happens in those situations.
For instance,

if there is a benign bug and the community restarts X,
ZXELARgovernance can determine to restart the
connection from where it left off.

• If ETH had moved to X, a custom Ethereum recovery key can determine what happens to the ETH
assets.

3The final deployment on the ZXELARnetwork will be finalized closer to the network launch.

9



6 Cross-Chain Gateway Protocol (CGP)

In this section, we explain the cross-chain gateway protocol and routing mechanisms on two core examples
common between many applications’ needs:

State synchronization (Section 6.2). Post information about the state of a source blockchain S into the
state of a destination blockchain D.

(For example, post a Bitcoin block header to the Ethereum blockchain.)

Asset transfer (Section 6.3). Transfer a digital asset from S to D and back again.

(For example, transfer bitcoins from the Bitcoin blockchain to the Ethereum blockchain, and then back
to the Bitcoin blockchain.)

For simplicity we assume that chain D has at least minimal support for smart contracts but S can be any
blockchain whatsoever.

6.1 Accounts on other chains

To bridge different chains, threshold accounts are created on each chain that control the flow of value and 

information across them. For chain Chain, denote the account by ChainZXELAR.

Bitcoin account. For Bitcoin and other non-smart contract chains ZXELARvalidators create a threshold
ECDSA key as per section 5.1. This key controls the ECDSA account on Bitcoin, and is the destination 

address where users send deposits. Personalized threshold keys may be created per user request. The key 

may be updated periodically,
and the latest key and personalized keys can be found by querying an ZXELAR node.

Threshold bridge account on chains with smart contracts. Denote the chain by SC. the validators
create a threshold ECDSA or ED25519 key as per section 5.1, depending on which key type the chain 

supports. We denote this key by PKZXELAR, when there is no ambiguity as to which chain we are referring 

to. This key controls a smart contract account on SC, denoted by SCZXELAR, and any application on SC can 

query SCZXELARto learn the PK address of that key. This way, any SC application can recognize messages 

signed by SKZXELAR. The protocol also needs to account for rotating values of PKZXELAR. This happens as 

follows:

1. Initialize SCZXELARon SC. It stores PKZXELARas part of its state, which is initialized as its genesis value
on ZXELAR. SCZXELARalso includes rules for updating the PK.

2. To update PKZXELAR, a transaction of the format (update, PKnew) must be submitted with a signature
from the current SKZXELAR. Then the contract sets PKZXELAR= PKnew.

3. Every time the validators update the threshold key for SC from PKi to PKi+1, ZXELARrequests that

validators use SKi to sign (update, PKi+1). Subsequently this signature is posted to SCZXELARwhich 

updates PKZXELAR.

6.2 State synchronization

Let qS denote an arbitrary question about the state of chain S. Examples of such questions include:

• “At what block round, if any, did a transaction tx appear?”

• “What is the value of a certain data field?”

• “What is the Merkle root hash of the entire state of S at block round 314159?”

Let aS denote the correct answer to qS and suppose an end-user or application demands that aS be posted 

to chain D. ZXELARnetwork meets this demand as follows:

10



the validators) or directly to the ZXELARblockchain.

2. As part of ZXELARconsensus, each validator must run node software for chains S, D.

1. The user posts a request qS on one of the bridge accounts (which are subsequently picked up by the

ZXELARvalidators
query the API of their chain S node software for the answer aS and report the answer to the ZXEL
AR
chain.

3. Once > F weighted validators report the same answer at round R,

ZXELARasks validators to sign aS .4. Using threshold cryptography the validators sign aS .

The signature is included in block R + 11.

5. Anyone can take the signed value aS from block R + 11 and post it to D.

6. The request has been serviced. Any application on D may now take the signed value aS , query DZXELAR

6.3 Cross-Chain Asset Transfer

The network enables cross-chain transfers of digital assets by extending the state synchronization workflow
of Section 6.2

for the latest PKZXELAR, and verify that the signature of aS corresponds to PKZXELAR. The validators 

also post aS to the bridge account on chain D, which applications can retrieve.

.

A sufficient supply of pegged-S tokens is printed and controlled by DZXELARupon its initialization. Suppose 

a user demands to exchange x amount of tokens on source chain S for x amount of pegged-S tokens on 

destination chain D, to be deposited at a D-address wD of the user’s choice. We present the fully general 

workflow, which supports arbitrary source chains S—even chains such as Bitcoin that do not support smart 

contracts:

1. The user (or an application acting on the user’s behalf) posts a transfer request (x,wD) to the threshold
bridge account which is subsequently routed to the ZXELARnetwork.

2. ZXELARvalidators use threshold cryptography to collectively create a fresh deposit address dS for S.
They post dS to the ZXELARblockchain.

3. The user (or an application acting on the user’s behalf) learns dS by monitoring the ZXELARblockchain.
The user sends x amount of S-tokens to address dS via an ordinary S-transaction txS using her favourite
software for chain S.

(Due to the threshold property of dS, tokens cannot be spent from dS unless a threshold number of the
validators coordinate to do so.)

4. txS is posted on ZXELAR. The validators query the API of their chain S node software for existence of
txS and, if the response is ”true”, report the answer to the ZXELARchain.

5. Once > F weighted validators report ”true” for txS at round R, ZXELARasks validators to sign a

transaction aD that sends x amount of pegged-S tokens from DZXELARto wD.

6. Using threshold cryptography the validators sign aD. The signature is included in block R + 11.

7. Anyone can take the signed value aD from block R + 11 and post it to D.

8. The request has been serviced, once aD is posted on D the transfer is processed.

Now suppose a user demands to redeem x′ amount of wrapped-S tokens from chain D back to chain S, to
be deposited at a S-address wS of the user’s choice. The workflow is as follows:

1. The user initiates a transfer request (x′, wS) by depositing x′ amount of wrapped-S tokens into cD via
an ordinary D-transaction using her favourite software for chain D.

2. (x′, wS) is posted on ZXELAR. The validators query the API of their chain D node software for existence
of (x′, wS) and, if the response is ”true”, report the answer to the ZXELARchain.

11



ZXELARnetwork: cross chain routing

Broadcast moduleBroadcast module Broadcast module

Threshold crypto Threshold crypto Threshold crypto

BridgesBridges Bridges

Validator Validator Validator

Threshold
bridge accounts

Dapps User accounts

CTP

Threshold
bridge accounts

Dapps User accounts

CTP

External chain External chain

monitor threshold accounts

transfer assets

private p2p private p2p

execute txs execute txs execute txs

2
n
d

la
y
e
r
c
o
n
se
n
su

s

2
n
d

la
y
e
r
c
o
n
se
n
su

s

2
n
d

la
y
e
r
c
o
n
se
n
su

s

CGP

bridged

through ZXELAR

Figure 1: Component diagram

3. Once > F weighted validators report ”true” for (x′, wS) at round R, ZXELARasks validators to sign a

transaction aS that sends x′ amount of S tokens from SZXELARto wS .

4. Using threshold cryptography the validators sign aS . The signature is included in block R + 11.

5. Anyone can take the signed value aS from block R + 11 and post it to S.

6. The request has been serviced, once aS is posted on S the transfer is processed.

Additional requests supported by the CGP routing layer include locking, unlocking or transferring assets
across chains.

Achieving Atomic Cross-Chain Transaction Flow. Depending on the cross-chain request type, ZXELAR
tries to ensure that the corresponding transactions are executed on multiple chains or none. Towards this,
every request can be in one of the following states in ZXELARblockchain: (initialized, pending,
completed,timed out). If a timeout at the pending stage is triggered, the request returns an error code.
Some timeout events also begin a refund event: for instance,
if an asset from one chain needs to be transferred into an asset on another chain,
if the receiving chain did not process the transaction, the asset is refunded back tothe original user.

7 Cross-Chain Transfer Protocol (CTP)

CTP is an application-level protocol that makes it easy for applications to leverage cross-chain features. We
explain the integration by focusing on asset transfer features (e.g., used in DeFi). These applications typically
consist of three main components: front-end GUI, smart contracts on one chain, and an intermediary node
that posts transactions between the front-end and the smart contracts. The front-ends interact with the
user’s wallets to accept deposits, process withdrawals, etc. Applications can leverage cross-chain features

12



by calling CTP queries analogous to HTTP/HTTPS GET/POST methods. These queries are subsequently
picked up by CGP layer for execution and results are returned back to the users.

• CTP Queries. Application developers can host their applications on any chain and integrate their
smart contracts with threshold bridge accounts to execute CTP queries.

• Threshold bridge accounts. Suppose an application developer builds their contracts on chain A. Then,
they would reference threshold bridge contracts to obtain cross-chain support. This contract allows
applications to:

– Register a blockchain it would like to communicate with.

– Register assets on that blockchain that it would like to leverage.

– Perform operations over the assets such as accept deposits, process withdrawals, and other func-
tions (similar to, say, ERC-20 contract calls).

Suppose a prominent DeFi application, MapleSwap, that natively resides on chain A registers with a 

threshold bridge account.
The ZXELARvalidators collectively manage the contract itself on the corresponding chain.
Suppose a user wants to submit a deposit into a trading pair between assets X and Y that reside 

across the two chains, respectively. Then, when a user submits such a request, it is routed via the threshold 

bridge account to the ZXELARnetwork for processing. Form there, the following steps are performed:

1. ZXELARnetwork understands that this application registered for the cross-chain support across the
assets. It generates the deposits key leveraging threshold cryptography and consensus for the user on
the corresponding chains A and B.

2. The associated public keys are returned to the application and displayed to the user who can use their
favorite wallets to submit deposits. The corresponding secret key is shared across all ZXELARvalidators.

3. When the deposits are confirmed, ZXELARupdates its cross-chain directory to record that the user on
the corresponding chains has deposited these assets.

4. The ZXELARvalidators execute multi-party protocols to generate a threshold signature that allows
updating the threshold bridge account on chain A where the application resides.

5. The CTP query is then returned to the DeFi application smart contracts, which can update its state,
update its yield formulas, exchange rates, or execute other application state-related conditions.

Throughout this process, the ZXELARnetwork, on a high-level, acts as a decentralized cross-chain read/
write oracle, CGP is the routing layer in between chains, and CTP is the application protocol.

Additional Cross-Chain Requests. CTP supports more general cross-chain between applications across
blockchains such as:

• Perform Public Key Name Services (PKNS). This is a universal directory for mapping public keys
to phone numbers/twitter handles (a few projects, such as Celo, provide these features within their
platforms).

• Cross-chain application triggers. An application on chain A can update its state if some another
application on chain B satisfies a search criteria (interest rate < X).

• Smart contract composability. Smart contract on chain A can update its state based on state of
contracts on chain B, or trigger an action to update a smart contract on chain B.

On a high-level, these requests can be processed since collectively, the protocols CTP, CGP,
and ZXELAR network can pass and write arbitrary verifiable state information across blockchains.

13



8 Summary

Over the next years, significant applications and assets will be built on top of multiple blockchain ecosys-
tems. ZXELARnetwork can be used to plug-in these blockchains into a uniform cross-
chain communication layer. This layer provides routing and application-
level protocols that meet both platform builders and ap-plication developers’ demands.
Application developers can build on the best platforms for their needs and 

leverage a simple protocol and API to access global cross-chain liquidity, users, and communicate with other 

chains.

References

[1] Althea peggy. https://github.com/cosmos/peggy. [Cited on page 2.]

[2] Deterministic usage of the digital signature algorithm (dsa) and elliptic curve digital signature algorithm
(ecdsa). https://tools.ietf.org/html/rfc6979. [Cited on page 5.]

[3] Edwards-curve digital signature algorithm (eddsa). https://tools.ietf.org/html/rfc8032. [Cited on

page 5.]

[4] Eos.io technical white paper v2.
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md. [Cited on page

1.]

[5] Ethereum: A secure decentralised generalised transaction ledger.
https://ethereum.github.io/yellowpaper/paper.pdf. [Cited on page 1.]

[6] The near white paper. https://near.org/papers/the-official-near-white-paper/. [Cited on page

1.]

[7] Rainbow bridge. https://github.com/near/rainbow-bridge. [Cited on page 2.]

[8] Ren: A privacy preserving virtual machine powering zero-knowledge financial applications. https:

//whitepaper.io/document/419/ren-litepaper. [Cited on page 3.]

[9] Serum. https://projectserum.com/serum_white_paper.pdf. [Cited on page 3.]

[10] tbtc: A decentralized redeemable btc-backed erc-20 token. https://docs.keep.network/tbtc/index.
pdf. [Cited on page 2.]

[11] Thorchain: A decentralized liquidity network. https://thorchain.org/. [Cited on page 3.]

[12] Kurt M. Alonso. Zero to monero. https://www.getmonero.org/library/Zero-to-Monero-1-0-0.

pdf. [Cited on page 1.]

[13] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A survey of ecdsa threshold signing.
Cryptology ePrint Archive, Report 2020/1390, 2020. https://eprint.iacr.org/2020/1390. [Cited on

page 6.]

[14] Ran Canetti, Nikolaos Makriyannis, and Udi Peled. Uc non-interactive, proactive, threshold ecdsa.
Cryptology ePrint Archive, Report 2020/492, 2020. https://eprint.iacr.org/2020/492. [Cited on

page 6.]

[15] cLabs Whitepapers. https://celo.org/papers. [Cited on page 1.]

[16] Ivan Damg̊ard, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter, and
Michael Bæksvang Østerg̊ard. Fast threshold ECDSA with honest majority. In SCN, volume 12238
of Lecture Notes in Computer Science, pages 382–400. Springer, 2020. [Cited on page 6.]

14

https://github.com/cosmos/peggy
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc8032
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://ethereum.github.io/yellowpaper/paper.pdf
https://near.org/papers/the-official-near-white-paper/
https://github.com/near/rainbow-bridge
https://whitepaper.io/document/419/ren-litepaper
https://whitepaper.io/document/419/ren-litepaper
https://projectserum.com/serum_white_paper.pdf
https://docs.keep.network/tbtc/index.pdf
https://docs.keep.network/tbtc/index.pdf
https://thorchain.org/
https://www.getmonero.org/library/Zero-to-Monero-1-0-0.pdf
https://www.getmonero.org/library/Zero-to-Monero-1-0-0.pdf
https://eprint.iacr.org/2020/1390
https://eprint.iacr.org/2020/492
https://celo.org/papers


[17] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors
Stepanovs. On the security of two-round multi-signatures. In IEEE Symposium on Security and Privacy,
pages 1084–1101. IEEE, 2019. [Cited on page 6.]

[18] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony.
https://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf. [Cited on page 5.]

[19] Rosario Gennaro and Steven Goldfeder. One round threshold ecdsa with identifiable abort. Cryptology
ePrint Archive, Report 2020/540, 2020. https://eprint.iacr.org/2020/540. [Cited on page 6.]

[20] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. Proceedings of the 26th Symposium on Operating Systems
Principles, 2017. https://dl.acm.org/doi/pdf/10.1145/3132747.3132757. [Cited on page 1.]

[21] Evan Kereiakes, Do Kwon, Marco Di Maggio, and Nicholas Platias. Terra money: Stability and adop-
tion.
https://terra.money/Terra_White_paper.pdf. [Cited on page 1.]

[22] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably
secure proof-of-stake blockchain protocol. https://eprint.iacr.org/2016/889.pdf. [Cited on page 1.]

[23] Chelsea Komlo and Ian Goldberg. Frost: Flexible round-optimized schnorr threshold signatures. Cryp-
tology ePrint Archive, Report 2020/852, 2020. https://eprint.iacr.org/2020/852. [Cited on page

6.]

[24] Jae Kwon and Ethan Buchman. Cosmos: A network of distributed ledgers.
https://cosmos.network/resources/whitepaper. [Cited on pages 1 and 2.]

[25] Avalanche Team. Avalanche platform.
https://www.avalabs.org/whitepapers. [Cited on pages 1 and 2.]

[26] Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework.
https://polkadot.network/PolkaDotPaper.pdf. [Cited on pages 1 and 2.]

15

https://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf
https://eprint.iacr.org/2020/540
https://dl.acm.org/doi/pdf/10.1145/3132747.3132757
https://terra.money/Terra_White_paper.pdf
https://eprint.iacr.org/2016/889.pdf
https://eprint.iacr.org/2020/852
https://cosmos.network/resources/whitepaper
https://www.avalabs.org/whitepapers
https://polkadot.network/PolkaDotPaper.pdf

